Theory of Formal Languages and Automata Lecture 14

Mahdi Dolati

Sharif University of Technology

Fall 2023

November 22, 2023

Theory of Formal Languages and Automata

Pumping Lemma for CFLs

Image by Clker-Free-Vector-Images from Pixabay

Mahdi Dolati (Sharif Univ. Tech.)

TFLA

November 22, 2023

2/10

- A pumping lemma for CF languages,
 - There exists a value called the pumping length,
 - All string longer than the pumping length can be pumped.
- Meaning of pumping:
 - The string can be divided into five parts,
 - The 2nd and 4th parts can be repeated together any number of times,
 - The resulting string is string in the language.

Theorem

If A is a CF language, then there is a number p (the pumping length) where any $s \in A$ with a length at of least p may be divided as s = uvxyz satisfying:

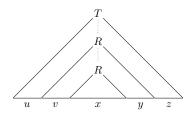
• for
$$i \ge 0$$
, $uv^i xy^i z \in A$,

2 |vy| > 0, and

$$|vxy| \le p.$$

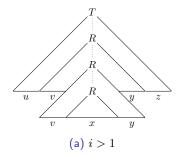
Proof idea:

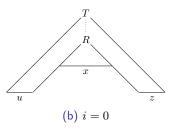
- Let A be a CFL and G be a CFG that generates it.
- Let $s \in A$ be a very long string.
- G generates s, resulting a parse tree.
- There is a very long path from the root to the terminal symbols at a leaf.
- Some variable R repeats in this path because of the pigeonhole principle.



Proof idea (Cont.):

- Replace the tree under the second one with the subtree under the first one.
- Result is still a valid parse tree.
- Thus, $s = uvxyz \in A$ and $uv^ixy^iz \in A$ for any $i \ge 0$.





Proof.

Let G be a CFG generating A. Let $b \ge 2$ be the maximum number of symbols in the right-hand side of a rule. In any parse they each node has at most b children. Thus, there are at most b^h leaves are within h steps of the start variable. Thus, parse tree of any string that is at least $b^h + 1$ symbols long must be at least h + 1 high. If $|s| \ge b^{|V|+1}$, then parse tree of s is at least |V| + 1 high, because $b^{|V|+1} \ge b^{|V|} + 1$. Consider a path that is |V| + 1 long from the root to a leaf. This path has |V| + 2 nodes, one terminal and |V| + 1 variables. Thus one variable R repeats in this path.

イロト 不得 トイヨト イヨト 二日

Proof Cont.

Divide s = uvxyz and choose a parse three with the minimum number of nodes. Consider the longest path in the parse tree. Choose two occurrences of R from the bottom |V| + 1 variables.

- The upper occurrence of R has a larger subtree, generating vxy. The lower occurrence of R generates x. Previous illustrations show that uvⁱxyⁱz ∈ A for any i ≥ 0.
- **2** To show |vy| > 0, assume the opposite |vy| = 0. Replace the upper R with the lower R and the tree is still generates s, which contradicts with choosing the tree with minimum number of nodes.
- So To show |vxy| ≤ p, note that the subtree below the upper R is at most |V| + 1 high (|V| + 1 variables and one terminal). Thus, vxy is at most $b^{|V|+1} ≤ p$ long.

(日) (周) (日) (日)

• Similar to the case for regular languages:

Note

While the pumping lemma states that all CFLs satisfy the conditions described above, the converse of this statement is not true: a language that satisfies these conditions may still be non-CF.

Example

Show that $B = \{a^n b^n c^n \mid n \ge 0\}$ is not CF.

Assume B is CF and let p be the pumping length. Select $s = a^p b^p c^p$. However, no matter how to divide s into uvxyz, of the lemma's conditions is violated when s is pumped:

- If v and y only contain one type of symbol, then uv^2xy^2z cannot contain equal numbers of a's, b's, and c's. Note, we have 3 symbols but in this case v and y can only pump two of the symbols. Thus, the equality can not hold.
- ⁽²⁾ If v and y contain more than one type of symbol, then uv^2xy^2z does not contain a's, b's, and c's in the correct order. Note, a string in B can not contain abab, abcabc, or bcbc substrings.

Both cases result in a contradiction. Thus, B can not be CF.

10/10